Abstract

RationaleCombined therapy is a promising approach over its preference to minimize the dose, adverse effects and enhanced therapeutic efficiency in a various diseases including diabetes. AimThe present research work is to explore combined synergistic anti-diabetic potential of chitosan and pectin with Metformin (CPM) nano-formulation, with special emphasis on effect of Metformin when integrated with bio polymers. MethodsThe biohybrid nanoparticles (CPMNP) were formulated by ionic gelation process. The optimized formulation was examined for various in vitro characterizations, in vivo anti-diabetic potential, biodistribution and targeting efficiency. ResultsThe optimized biohybrid showed higher content of Metformin 92.1 ± 3.3% and extended release. The pectin coated nanoparticles had smooth spherical morphology with 581.8 nm size and positive surface charge (+41.76 mV). The biohybrid regulated blood glucose, improved the glucose utilization in vital organs, control the dyslipdimea and renal impairment in diabetic rats. CPMNP-4 significantly enhanced the up regulation of IRA, GLUT-2 and GK receptor gene expression and down regulate the TNF-α and IL-6 in pancreas. Also, nanoparticles showed healthier biodistribution simultaneously capability to penetrate in vital organs. ConclusionThe combined synergistic effects of Metformin and biopolymers are due their corresponding mechanism to enhance glucose uptake, minimized the adverse effects during diabetic therapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.