Abstract
Two dominant driving forces for evolving communication technologies in the current society have been the proliferation of wireless access networks to the Internet and the broadbandization of access and infrastructure networks. Through these evolutions of communication technologies, high-resolution contents are instantly delivered to wireless devices such as mobile phones, wireless tablets, and headsets. Recently, wireless sensor networks, where up to 1000 low-power sensors are wirelessly connected to each other, have been created and connected to the Internet, which presents a new challenge of efficiently coordinating the transmissions of many wireless sensors with minimal transmission overheads. Developing an efficient Medium Access Control (MAC) protocol governing the transmissions of wireless sensor networks is crucial for the success of wireless sensor networks for the realization of the Internet of Things (IoT). In 2023, the node insertion algorithm was proposed to efficiently derive the minimal number of serially connected multipolling sequences of many wireless sensors, by which Access Points (APs) can poll wireless sensors with minimal polling overheads. In this paper, the combined sweeping and jumping method is presented to dramatically enhance the searching performance of the node insertion algorithm. To validate the performance of the combined sweeping and jumping method, simulation results are presented for wireless sensor networks where wireless sensors with varying transmission ranges exist.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.