Abstract

Obstructive sleep apnea (OSA) is a sleeping breathing disorder. In children, adenotonsillar hypertrophy remains the main anatomical risk factor of OSA. The aim of this study was to assess the current scientific data and to systematically summarize the evidence for the efficiency of adenotonsillectomy (AT) and orthodontic treatment (i.e., rapid maxillary expansion (RME) and mandibular advancement (MA)) in the treatment of pediatric OSA. A literature search was conducted in several databases, including PubMed, Embase, Medline, Cochrane and LILACS up to 5th April 2020. The initial search yielded 509 articles, with 10 articles being identified as eligible after screening. AT and orthodontic treatment were more effective together than separately to cure OSA in pediatric patients. There was a greater decrease in apnea hypoapnea index (AHI) and respiratory disturbance index (RDI), and a major increase in the lowest oxygen saturation and the oxygen desaturation index (ODI) after undergoing both treatments. Nevertheless, the reappearance of OSA could occur several years after reporting adequate treatment. In order to avoid recurrence, myofunctional therapy (MT) could be recommended as a follow-up. However, further studies with good clinical evidence are required to confirm this finding.

Highlights

  • Obstructive sleep apnea (OSA) is described as a sleeping breathing disorder, characterized by prolonged partial upper airway obstruction and/or intermittent complete obstruction [1]

  • Group 1: AT followed by rapid maxillary expansion (RME), Group 2: RME followed by AT

  • Concerning the order of treatment, five studies [19,20,23,24,25] performed AT before orthodontic treatment, one case report [21] performed both treatments at the same time, one study [18] completed the orthodontic treatment before AT and three trials [22,26,27] compared both in different groups: AT followed by RME and RME followed by AT

Read more

Summary

Introduction

Obstructive sleep apnea (OSA) is described as a sleeping breathing disorder, characterized by prolonged partial upper airway obstruction and/or intermittent complete obstruction [1]. This syndrome is commonly correlated with intermittent hypoxemia and sleep fragmentation [2]. OSA has been associated with frequent snoring, disturbed sleep, daytime neurobehavioral problems, neurocognitive impairments, academic underperformance, hypertension, cardiac dysfunction and systemic inflammation. Etiological factors include any condition that reduces the caliber of the upper airways, such as craniofacial dysmorphism, hypertrophy of lymphoid tissues, obesity, hypotonic neuromuscular diseases and neuromotor control alterations during sleep. Adenotonsillar hypertrophy remains the main anatomical risk factor [4,5,6,7]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call