Abstract

In situ electrochemical surface-enhanced infrared absorption spectroscopy (EC-SEIRAS) together with a periodic density functional theory (DFT) calculation has been initially applied to investigate the mechanism of formic acid electro-oxidation on Sb-modified Pt (Sb/Pt) electrode. EC-SEIRAS measurement reveals that the main formic acid oxidation current on Sb/Pt electrode is ca. 10-fold enhanced as compared to that on clean Pt electrode, mirrored by nearly synchronous decrease of the CO and formate surface species, suggesting a “non-formate” oxidation as the main pathway on the Sb/Pt electrode. On the basis of the calculations from periodic DFT, the catalytic role of Sb adatoms can be rationalized as a promoter for the adsorption of the CH-down configuration but an inhibitor for the adsorption of the O-down configuration of formic acid, kinetically facilitating the complete oxidation of HCOOH into CO2. In addition, Sb modification lowers the CO adsorption energy on Pt, helps to mitigate the CO poisoning ef...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.