Abstract

IntroductionDementia in Parkinson’s disease (PDD) is a common non-motor symptom of advanced disease, associated with pronounced neocortical cholinergic deficits due to neurodegeneration of the nucleus basalis of Meynert (NBM) and its cholinergic terminals. In advanced PD, patients often require advanced therapies such as infusion therapy or deep brain stimulation (DBS) to improve motor control. However, patients with associated dementia are commonly excluded from DBS because of potential deterioration of cognitive functions. Yet marked reductions in dopaminergic medication and the subsequent risk of side effects (e.g., cognitive decline, psychosis, delirium) suggest that critical re-consideration of DBS of the subthalamic nucleus (STN-DBS) for advanced stages of PD and PDD is worthwhile. In this Phase 1b study, we will provide STN-DBS to a cohort of PDD patients with severe motor fluctuations and combine two additional electrodes for augmentative neurostimulation of the NBM.MethodsWe aim to include 12 patients with mild-to-moderately severe PDD who fulfill indication criteria regarding motor symptoms for STN-DBS. Eligible patients will undergo implantation of a neurostimulation system with bilateral electrodes in both the STN and NBM. After 12 weeks of STN-DBS (visit 1/V1), participants will be randomized to receive either effective neurostimulation of the NBM (group 1) or sham stimulation of the NBM (group 2). NBM-DBS will be activated in all participants after 24 weeks of blinded treatment (visit 2/V2). The primary outcome will be the safety of combined bilateral STN- and NBM-DBS, determined by spontaneously-reported adverse events. Other outcome measures will comprise changes on scales evaluating cognition, activities of daily living functioning and clinical global impression, as well as motor functions, mood, behavior, caregiver burden and health economic aspects, and several domain-specific cognitive tests. Changes in scores (V1 – V2) for both treatment arms will undergo analysis of covariances, with baseline scores as covariates.PerspectiveThe feasibility and safety of combined STN-NBM-DBS in patients with PDD will be assessed to determine whether additional NBM-DBS improves or slows the progression of cognitive decline. Positive results would provide a basic concept for future studies evaluating the efficacy of NBM-DBS in larger PDD cohorts. Indirectly, proof-of-safety of STN-DBS in PDD might influence patient selection for this standard treatment option in advanced PD.Trial registrationClinicalTrials.gov identifier (NCT number): NCT02589925.

Highlights

  • Dementia in Parkinson’s disease (PDD) is a common non-motor symptom of advanced disease, associated with pronounced neocortical cholinergic deficits due to neurodegeneration of the nucleus basalis of Meynert (NBM) and its cholinergic terminals

  • Perspective: The feasibility and safety of combined subthalamic nucleus (STN)-NBM-deep brain stimulation (DBS) in patients with PD dementia (PDD) will be assessed to determine whether additional NBM-DBS improves or slows the progression of cognitive decline

  • In non-demented patients with minimal cognitive impairment (MCI), visuospatial dysfunction is associated with a high risk of subsequent dementia [39]

Read more

Summary

Methods

Aim of the trial The only currently-available treatment option in PDD consists of oral rivastigmine, which increases acetylcholine levels in the brain by inhibiting cholinesterase [12]. Twelve weeks after STN activation, neurostimulation Visit 1 (V1) will take place At this time, baseline evaluation of the clinical global impression of change (ADCSCGIC) will be performed by a blinded rater not involved in medical treatment and with no information about the results of other scales and scores. Arms and interventions Eligible patients who consent to participation and meet all inclusion and exclusion criteria will receive the following settings in a pre-specified randomized order for NBM-DBS at V2: test stimulation at 60 μs, 20 Hz, and individually-adjusted amplitude (verified using the GuideXT visualization tool (BSC) if necessary) below the threshold of adverse effects; sham stimulation at 0 V, 60 μs, 20 Hz. As we do not anticipate any specific clinical effects after NBM-DBS activation, blinding will be secured by documenting NBM-DBS parameters independent from medical records.

Introduction
Findings
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call