Abstract

Phase-pure multiferroic bismuth ferrite (BFO) nanoparticles were synthesized by energy efficient, simple and low temperature sol–gel followed by auto-combustion route. Highly crystalline and well-shaped BFO nanoparticles of size about 50 nm were observed in TEM. Thermal analysis was used to optimize the calcination temperature as 500 °C. An endothermic peak at 834 °C has been detected in the DTA curve, representing the Curie temperature. The dielectric anomaly around Neel temperature (TN) was observed signifying the magnetoelectric coupling. The BFO nanoparticles were found to be highly resistive (ρ ∼ 3 × 109 Ω-cm) and had very low leakage current of the order of μA/cm2, which resulted from phase purity. A significantly enhanced weak ferromagnetism was observed due to smaller particles size and remnant magnetization and coercive field were 0.067 emu/g and 185 Oe, respectively. P–E loop confirmed the ferroelectric behavior of BFO nanoparticles. The direct band gap energy was calculated to be 2.2 eV from UV–vis studies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call