Abstract

Titanium dioxide (TiO2) thin films are commonly used as photocatalytic materials. Here, we enhance the photocatalytic activity of devices based on titanium dioxide (TiO2) by combining nanostructured glass substrates with metallic plasmonic nanostructures. We achieve a three-fold increase of the catalyst's surface area through nanoscale, three-dimensional patterning of periodic, conical grids, which creates a broadband optical absorber. The addition of aluminum and gold activates the structures plasmonically and increases the optical absorption in the TiO2 films to above 70% in the visible and NIR spectral range. We demonstrate the resulting enhancement of the photocatalytic activity with organic dye degradation tests under different light sources. Furthermore, the pharmaceutical drug Carbamazepine, a common water pollutant, is reduced in the aqueous solution by up to 48% in 360 min. Our approach is scalable and potentially enables future solar-driven wastewater treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call