Abstract
Presents a novel method for three-dimensional segmentation and measurement of volumetric data based on the combination of statistical and geometrical information. The problem of shape representation of very complex three-dimensional structures, such as the brain cortex, is approached by combining the use of a discrete 3D mesh (the simplex mesh) with the construction of a smooth surface using triangular Gregory-Bezier patches. A Gaussian model for the tissues present in the image is adopted and a classification procedure which also estimates and corrects for the bias field present in the MRI is used. Confidence bounds are produced for all the measurements, thus obtaining a distribution on the position of the surface segmenting the image as the output of the method. Performance is tested both on real data and simulations of MR volumes, which provide ground truth. The method is also compared with other existing techniques.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.