Abstract

An approach is described for exploiting the tradeoffs between source and channel coding in the context of image transmission. The source encoder employs two-dimensional (2-D) block transform coding using the discrete cosine transform (DCT). This technique has proven to be an efficient and readily implementable source coding technique in the absence of channel errors. In the presence of channel errors, however, the performance degrades rapidly, requiring some form of error-control protection if high quality image reconstruction is to be achieved. This channel coding can be extremely wasteful of channel bandwidth if not applied judiciously. The approach described here provides a rationale for combined source-channel coding which provides improved quality image reconstruction without sacrificing transmission bandwidth. This approach is shown to result in a relatively robust design which is reasonably insensitive to channel errors and yet provides performance approaching theoretical performance limits. Analytical results are provided for assumed 2-D autoregressive image models, while simulation results are provided for real-world images.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.