Abstract
There has been an increased interest in the transmission of digital video over real-world transmission media, such as the direct broadcast satellite (DBS) channel. Video transmitted over such a channel is subject to degradation due, in part, to additive white Gaussian noise (AWGN). Some form of forward error-control (FEC) coding may be applied in order to reduce the effect of the noise on the transmitted bitstream; however, determination of the appropriate level of FEC coding is generally an unwieldy and computationally intensive problem, as it may depend upon a variety of parameters such as the type of video, the available bandwidth, and the channel SNR. More specifically, a combined source-channel coding approach is necessary in optimally allocating rate between source and channel coding subject to a fixed constraint on overall transmission bandwidth. In this paper we develop a method of optimal bit allocation under the assumption that the distortion is additive and independent on a frame-by-frame basis. A set of universal operational distortion-rate characteristics is developed which balances the tradeoff between source coding accuracy and channel error protection for a fixed overall transmission rate and provides the basis for the optimal bit allocation approach. The results for specific source and channel coding schemes show marked improvement over suboptimum choices of channel error protection. In addition, we show that our results approach information-theoretic performance bounds which are developed in this work.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.