Abstract

Although understanding the diversity of HIV-1 reservoirs is key to achieving a cure, their study at the single-cell level in primary samples remains challenging. We combine flow cytometric multiplexed fluorescent in situ RNA hybridization for different viral genes with HIV-1 p24 protein detection, cell phenotyping, and downstream near-full-length single-cell vDNA sequencing. Stimulation-induced viral RNA-positive (vRNA+) cells from viremic and antiretroviral-therapy (ART)-suppressed individuals differ in their ability to produce p24. In participants on ART, latency-reversing agents (LRAs) induce a wide variety of viral gene transcription and translation patterns with LRA class-specific differences in reactivation potency. Reactivated proviruses, including in p24+ cells, are mostly defective. Although LRAs efficiently induce transcription in all memory cell subsets, we observe induction of translation mostly in effector memory cells, rather than in the long-lived central memory pool. We identify HIV-1 clones with diverse transcriptional and translational patterns between individual cells, and this finding suggests that cell-intrinsic factors influence reservoir persistence and heterogeneity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.