Abstract

AbstractLow‐frequency hiss is known to play an important role in the precipitation of radiation belt electrons by cyclotron, Landau, and bounce resonances. To investigate the potential combined scattering effect caused by these resonant processes, we analyze the resonant conditions and develop a full relativistic test particle code to quantify the net pitch angle scattering efficiency. It is indicated that the three resonance processes can coexist to scatter electrons at different energies and pitch angles, with the net pitch angle scattering rates up to ~10−3 s−1 for low‐frequency hiss ~175 pT at L = 4.5. Comparisons with the quasi‐linear theory results demonstrate that the cyclotron resonance is mainly responsible for the pitch angle scattering of electrons < ~ 80°, while both Landau and bounce resonances can affect the scattering of near‐equatorially mirroring electrons and their combined diffusion produces smaller scattering coefficients compared to quasi‐linear theory calculations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.