Abstract

The mean size and size distribution of a targeted nanoparticle delivery system (NDS) strongly influences the intrinsic stability and functionality of this molecular complex, affects its performance as a systemic drug delivery platform and ultimately determines its efficacy toward early detection and treatment of cancer. Since its components undergo significant reorganization during multiple stages of self-assembly, it is essential to monitor the size and stability of the complex throughout the NDS formulation in order to ensure its potency and manufacturability prior to entering clinical trials. This work combines scanning probe microscopy (SPM) and dynamic light scattering (DLS) techniques to obtain quantitative and reliable size measurements of the NDS, and to investigate how variations in the NDS formulation or self-assembly process impact the size, structure and functionality of the complex with various therapeutic and diagnostic agent payloads. These combined SPM and DLS methods, when implemented at an early stage of the NDS formulation, present a potential measurement approach to facilitate drug discovery and development, optimization and quality control during manufacturing of the NDS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.