Abstract
In complex mountainous areas where earthquakes are frequent, landslide hazards pose a significant threat to human life and property due to their high degree of concealment, complex development mechanism, and abrupt nature. In view of the problems of the existing landslide hazard susceptibility evaluation model, such as poor effectiveness and inaccuracy of landslide hazard data and the need for experts to participate in the calculation of a large number of evaluation factor weight classification statistics. In this paper, a combined SBAS-InSAR (Small Baseline Subsets-Interferometric Synthetic Aperture Radar) and PSO-RF (Particle Swarm Optimization-Random Forest) algorithm was proposed to evaluate the susceptibility of landslide hazards in complex mountainous regions characterized by frequent earthquakes, deep river valleys, and large terrain height differences. First, the SBAS-InSAR technique was used to invert the surface deformation rates of the study area and identified potential landslide hazards. Second, the study area was divided into 412,585 grid cells, and the 16 selected environmental factors were analyzed comprehensively to identify the most effective evaluation factors. Last, 2722 landslide (1361 grid cells) and non-landslide (1361 grid cells) grid cells in the study area were randomly divided into a training dataset (70%) and a test dataset (30%). By analyzing real landslide and non-landslide data, the performances of the PSO-RF algorithm and three other machine learning algorithms, BP (back propagation), SVM (support vector machines), and RF (random forest) algorithms were compared. The results showed that 329 potential landslide hazards were updated using the surface deformation rates and existing landslide cataloguing data. Furthermore, the area under the curve (AUC) value and the accuracy (ACC) of the PSO-RF algorithm were 0.9567 and 0.8874, which were higher than those of the BP (0.8823 and 0.8274), SVM (0.8910 and 0.8311), and RF (0.9293 and 0.8531), respectively. In conclusion, the method put forth in this paper can be effectively updated landslide data sources and implemented a susceptibility prediction assessment of landslide disasters in intricate mountainous areas. The findings can serve as a strong reference for the prevention of landslide hazards and decision-making mitigation by government departments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.