Abstract

Graphite oxide synthesized using the Brodie method was tested for ammonia adsorption after two different levels of drying in dynamic conditions at the ambient temperature. Surface characterization before and after exposure to ammonia was done using X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, and potentiometric titration. On the surface of the initial materials, besides epoxy, hydroxyl, and carboxylic groups, various amounts of water within the interlayer space are present. The results showed that ammonia is intercalated within the interlayer space of graphite oxides. Water enhances the amount of ammonia adsorbed via the dissolution and promotes the dissociation of surface functional groups. This enhances formation of ammonium ions. On the other hand, water screens the accessibility of epoxy and -COOH groups for reactions with ammonia and thus limits the amount adsorbed. The retention of ammonia on a partially dried graphite oxide is enhanced not only owing to those reactions but also because of the formation of new adsorption centers as a result of an incorporation of ammonia to the graphene layers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.