Abstract

Understanding the interplay between strain and nonstoichiometry for the electronic, magnetic, and redox properties of LiMn2O4 films is essential for their development as Li-ion battery (LIB) cathodes, photoelectrodes, and systems for sustainable spintronics applications as well as for emerging applications that combine these technologies. Here, density functional theory (DFT) simulations suggest that compressive strain increases the reduction drive of (111) LiMn2O4 films by inducing >1 eV upshift of the valence band edge. The DFT results indicate that, regardless of the crystallographic orientation for the LiMn2O4 film, biaxial expansion increases the magnetic moments of the Mn atoms. Conversely, biaxial compression reduces them. For ferromagnetic films, these changes can be substantial and as large as over 4 Bohr magnetons per unit cell over the simulated range of strain (from -6 to +3%). The DFT simulations also uncover a compensation mechanism whereby strain induces opposite changes in the magnetic moment of the Mn and O atoms, leading to an overall constant magnetic moment for the ferromagnetic films. The calculated strain-induced changes in atomic magnetic moments reflect modifications in the local electronic hybridization of both the Mn and O atoms, which in turn suggests strain-tunable, local chemical, and electrochemical reactivity. Several energy-favored (110) and (111) ferromagnetic surfaces turn out to be half-metallic with minority-spin band gaps as large as 3.2 eV and compatible with spin-dependent electron-transport and possible spin-dependent electrochemical and electrocatalytic properties. The resilience of the ferromagnetic, half-metallic states to surface nonstoichiometry and compositional changes invites exploration of the potential of LiMn2O4 thin films for sustainable spintronic applications beyond state-of-the-art, rare-earth metal-based, ferromagnetic half-metallic oxides.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call