Abstract
This study analyzes the effect of advective pumping and pore scale dispersion on bed form–induced hyporheic exchange. Advection and dispersion play a competitive role in the exchange dynamics between the porous medium and the overlying stream: Advective fluxes first lead solutes deep into the bed and then back to the stream water, whereas dispersive fluxes favor the transfer of solutes deep into the bed leading to a permanent mass retention. The combined effect of advective exchange and dispersive fluxes produces complexity in the shape of the tails of the residence time distributions (RTDs), which follow at various stages of the process either a power law or an exponential decay. The seepage velocity induced by the stream gradient and, in case of a moving bed, the celerity of the translating bed forms limit the thickness of the advective hyporheic zone, inducing the RTDs to decrease rapidly at late time. This rapid decay can be preceded by a temporal region where the probability density functions (pdf's) tend to be inversely proportional to the square of time, and is followed by a region dominated by dispersion where the pdf's tend to be inversely proportional to the 3/2 power of time. The process shows distinct temporal ranges identified here by appropriate dimensionless parameters. Because of this complex exchange dynamics, models considering pure advection in the porous medium can significantly underestimate solute transfer at long time scales, whereas purely diffusive models of hyporheic exchange appear inadequate to represent the physical processes at an intermediate stage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.