Abstract

Cardiac fibrosis is associated with increased stiffness of the myocardial extracellular matrix (ECM) in part mediated by increased cardiac fibroblast proliferation However, our understanding of the mechanisms regulating cardiac fibroblast proliferation are incomplete. Here we characterise a novel mechanism involving a combined activation of Yes-associated protein (YAP) targets RUNX Family Transcription Factor 2 (RUNX2) and TEA Domain Transcription Factor (TEAD).We demonstrate that cardiac fibroblast proliferation is enhanced by interaction with a stiff ECM compared to a soft ECM. This is associated with activation of the transcriptional co-factor, YAP. We demonstrate that this stiffness induced activation of YAP enhances the transcriptional activity of both TEAD and RUNX2 transcription factors. Inhibition of either TEAD or RUNX2, using gene silencing, expression of dominant-negative mutants or pharmacological inhibition, reduces cardiac fibroblast proliferation. Using mutants of YAP, defective in TEAD or RUNX2 activation ability, we demonstrate a dual role of YAP-mediated activation of TEAD and RUNX2 for substrate stiffness induced cardiac fibroblast proliferation.Our data highlights a previously unrecognised role of YAP mediated RUNX2 activation for cardiac fibroblast proliferation in response to increased ECM stiffness.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.