Abstract

In discrete multitone receivers, the classical equalizer structure consists of a (real) time domain equalizer (TEQ) combined with complex one-tap frequency domain equalizers. An alternative receiver is based on a per tone equalization (PTEQ), which optimizes the signal-to-noise ratio (SNR) on each tone separately and, hence, the total bitrate. In this paper, a new initialization scheme for the PTEQ is introduced, based on a combination of least mean squares (LMS) and recursive least squares (RLS) adaptive filtering. It is shown that the proposed method has only slightly slower convergence than full square-root RLS (SR-RLS) while complexity as well as memory cost are reduced considerably. Hence, in terms of complexity and convergence speed, the proposed algorithm is in between LMS and RLS.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.