Abstract

This study explored the types of polychlorinated naphthalene (PCN)-contaminated soil and determined the practicable scheme of combined remediation using an integrated method of genetic engineering and environmental remediation technology. A multi-scenario comprehensive evaluation system of a plant-microbial combined bioremediation of PCN-contaminated soil was established using the intelligent integration of analytic hierarchy process and formula evaluation methods based on the current situation of PCN contamination in China, which showed the bioremediation of PCN-contaminated soil by the plant-microbial system could be divided into four scenarios. QSAR models were constructed to quantify the remediation mechanism that electronic parameter ∆E was the key factor changing the efficiency of combined bioremediation. Moreover, the macro-control scheme of PCN-contaminated soil was established, which indicated that four new multifunctional proteins promoted the absorption, degradation, and mineralization of PCNs in specific soil pollution types significantly, were obtained through cross gene recombination. The molecular dynamics (MD) simulation results showed the efficiency of the plant-microbial combined bioremediation were increased by 15.45% (Scenario 1, 2, 3) and 20.02% (Scenario 4) under the optimal regulation scheme. The findings will be helpful to realize the regional control of PCN-contaminated soil.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call