Abstract

A combined Raman elastic-backscatter lidar has been developed. A XeCl excimer laser is used as the radiation source. Inelastic Raman backscatter signals are spectrally separated from the elastic signal with a filter or grating polychromator. Raman channels can be chosen to register signals from CO2, O2, N2, and H2O. Algorithms for the calculation of the water-vapor mixing ratio from the Raman signals and the particle extinction and backscatter coefficients from both elastic and inelastic backscatter signals are given. Nighttime measurements of the vertical humidity distribution up to the tropopause and of particle extinction, backscatter, and lidar ratio profiles in the boundary layer, in high-altitude water and ice clouds, and in the stratospheric aerosol layer are presented. Daytime boundary-layer measurements of moisture and particle extinction are made possible by the improved daylight suppression of the grating polychromator. Test measurements of the CO2 mixing ratio indicate the problems for the Raman lidar technique in monitoring other trace gases than water vapor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.