Abstract

Raman spectra containing the distinct band at 322 cm-1 due to CaF2 or CaF2-like material formed in/on fluoridated bovine enamel were recorded using a micro-Raman spectrograph. Due to increasing levels of background fluorescence with increasing thickness of enamel, the Raman measurements were carried out on thin regions of wedged enamel sections. The distribution of the CaF2 or CaF2-like material was estimated using a simple model. The results indicate that 1/3 of the total CaF2 was concentrated within the narrow depth < 2 microns with high CaF2 concentrations (> 10 wt%), and that the majority of the CaF2 was distributed over the depths up to 26 microns (1 wt% CaF2). SEM observations on fractured fluoridated enamel confirmed that morphological changes were present in the depth range comparable to that of the high CaF2 concentration region expected from the Raman analysis. In deeper regions where lower concentration (< 10%) but a large amount of CaF2 was still expected, the SEM images failed to distinguish between the normal and fluoridated enamel. After KOH treatment, the Raman spectra did not show evidence of the CaF2 peak and the SEM micrographs also confirmed the removal of globules. The peak position of the Raman band of the CaF2 formed by the fluoridation was identical to that of pure CaF2. However, the linewidth was 23 cm-1 (FWHM) and a factor of 2 broader than that of pure CaF2 (12 cm-1). This implies that the lattice dynamics of the CaF2 formed by fluoridation is different from of pure CaF2, and that the material formed is 'CaF2-like' or 'disordered CaF2'.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.