Abstract

Dissolved organic matter (DOM) is a complex mixture of thousands of molecular formulas comprised of an unknown number of chemical compounds, the concentration and composition of which are critical to ecosystem function and biogeochemical cycling. Despite its importance, our understanding of the DOM composition is lacking. This is principally due to its molecular complexity, which means that no single method is capable of describing DOM in its entirety. Quantification is typically done by proxy (e.g., relative to carbon content) and does not necessarily match well to compositional data, due to incomplete analytical windows and selectivity of different analytical methods. We present an integrated liquid chromatography (LC)-diode array detector (DAD)-charged aerosol detector (CAD)-mass spectrometry (MS) pipeline designed to both characterize and quantify solid-phase extractable DOM (SPE-DOM) in a single analysis. We applied this method to a set of eight Swedish water bodies sampled in the summer and winter. Chromophoric SPE-DOM was proportionally higher in samples with higher SPE-DOM concentrations but remained relatively consistent between sampling occasions. Ionizable SPE-DOM was relatively consistent across sites but was proportionally higher in summer. Overall, the carbon content of DOM was very consistently ∼40% across sites in both summer and winter. These findings suggest that SPE-DOM concentration at these sites is driven by (presumably allochthonous) chromophoric inputs, with an increased relative contribution in summer of material that is more ionizable and less chromophoric and may be either autochthonous or selectively enriched from allochthonous sources. Thus, with minimal additional effort, this method provided further compositional insights not attained by any single analysis in isolation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.