Abstract

The spout fluidized bed is a very successful combination of spouted and fluidized bed, which is most interesting for processing particles with larger or varying diameter. However, the more complex hydrodynamics of the combined configuration is yet not fully understood. Here, we propose the application of ultrafast X-ray computed tomography (CT), which has proven to be a valuable measurement technique for the analysis of highly dynamic processes, for example multiphase flows. It is able to resolve material distributions with up to 8000 frames per second and a spatial resolution down to 1mm. Especially for opaque systems, such as fluidized beds, ultrafast X-ray CT can reveal details, which are not recoverable by e.g. optical measurement techniques. Besides the recovering of the dynamic phase distribution, determining local particle velocities is essential to understand the complex flow in fluidized beds. As we will demonstrate here for the first time, this is possible via a dual-plane ultrafast X-ray CT by using suitable marker particles. In this article, the methodology for determining particle velocities under highly dynamic conditions within a cylindrical spout fluidized bed is presented. Complementary analysis techniques for different flow conditions have been combined to increase confidence in the velocity data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.