Abstract
The turbulence structure of flow field including microbubbles in a horizontal channel is experimentally investigated using an image processing technique in order to clarify the mechanism for drag reduction caused by microbubbles. A new system for the simultaneous measurement of liquid and dispersed gas phases is proposed, which is based on the combination of Particle Tracking Velocimetry, Laser Induced Fluorescence and Shadow Image Technique (PTV/LIF/SIT). To accurately detect the velocity vectors of the liquid phase in the two coexistent phases, the tracer particles overlapped with bubble shadow images are almost entirely eliminated in the post-processing stage. Finally, turbulence characteristics of the objective flow field are presented with the measurements for both phases obtained by the proposed system. The local interaction between bubbles and surrounding liquid is clarified.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: TRANSACTIONS OF THE JAPAN SOCIETY OF MECHANICAL ENGINEERS Series B
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.