Abstract

Does combined parental obesity, both an obese mother and father, have a greater effect on mouse preimplantation embryo development and quality than single-parent obesity? Combined parental obesity causes a greater reduction in the blastocyst rate and a greater delay to the timing of key embryonic developmental events than single-parental obesity, as well as altering embryonic characteristics, such as zona pellucida width. Maternal or paternal obesity alone are known to have significant and detrimental impacts on preimplantation embryo development. Furthermore, these early embryonic perturbations can have long-term impacts on both offspring health and further generations. This is one of the first studies to examine the effects of having both an obese mother and an obese father. A cross-sectional control versus treatment mouse study of diet-induced obesity was employed, in which 300 embryos per group were generated and studied from reciprocal matings: (i) control female and control male (Lean Parented Embryos); (ii) control female and obese male (Paternal Obese Parented Embryos); (iii) obese female and control male (Maternal Obese Parented Embryos) and (iv) obese female and obese male (Combined Obese Parented embryos). Assessments of the embryonic development rate, timing of development, morphological characteristics, metabolic gene expression, metabolism and cell lineage allocation were made at selected time points and analysed in relation to parental obesity status. Three-week-old C57BL6 male and female mice were fed control (7% total fat) or high fat (21% total fat) diets for a minimum of 8 weeks. Females were superovulated, mated, fertilized zygotes recovered and standard mouse in vitro embryo culture performed. Time-lapse monitoring was undertaken to compare developmental timings and morphological characteristics (embryonic area and zona pellucida width) for embryos from all four reciprocal matings. Differential staining identified cell lineage allocation. Real-time quantitative RT-PCR (qRT-PCR) and microfluorescence were used to measure gene expression and metabolism (glucose consumption and lactate production), respectively, in embryos from Lean Parented and Combined Obese Parented matings. This research was completed in a University research laboratory. Blastocyst rate was reduced in Combined Obese Parented embryos when compared with both Single Obese (11% decrease for Maternal Obese Parented, P < 0.05; 15% for Paternal Obese Parented, P < 0.05) and Lean Parented embryos (25% decrease, P < 0.01). Time-lapse analysis of developmental kinetics highlighted a delay of 1 h at the 2-3 cell division, extending to 6 h delay by the blastocyst stage for Combined Obese Parented embryos (P < 0.05). A reduction in the total cell number of Combined Obese Parented blastocysts was a further manifestation of this developmental delay (P < 0.05). Zona pellucida width was reduced in Combined Obese Parented embryos (P < 0.05). Glucose consumption was increased in Combined Obese Parented embryos (P < 0.05), which was associated with the up-regulation of Glucose transporter 1 expression (P < 0.05). This study was completed in fertile C57BL/6 mice using a well-defined model of diet-induced obesity in which embryos were fertilized in vivo. Human obesity is complex, with many causes and co-morbidities, and therefore, the impact of combined obesity would require further investigation in human settings. This study demonstrates that combined parental obesity has a detrimental impact on mouse embryo development, a finding consistent with previous studies on individual parent obesity. Of note, the effect of combined parental obesity upon embryo development markers was greater than that of individual parental obesity. Plausibly, human embryos will be similarly impacted. The reduction in the blastocyst rate and delayed time to developmental events confirms that embryos of obese parents differ from those of lean parents. Allowance for this should therefore be incorporated into clinical practice when selecting the best embryo for the transfer of an obese couple. Funding was provided by University of Melbourne research monies. M.P.G. currently holds the position of Merck Serono Lecturer of Reproductive Biology. D.K.G. received research funds from Vitrolife AB Sweden. The other authors of this manuscript have nothing to declare and no conflicts of interest.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call