Abstract

Past research in the field of shape memory polymers has led to significant advancements in the areas of so-called one-way and two-way (reversible) shape memory. While one-way shape memory polymers allow indefinite fixing of a temporary shape until triggered thermally to recover to an equilibrium shape, two-way shape memory polymers feature muscle-like contraction on heating and expansion on cooling under tensile load, the latter anomalous elongation occurring due to an ordering transition. Previously, reversible actuation has been reported for liquid crystalline elastomers featuring a monodomain (uniformly aligned) structure, suggesting that such alignment is required for actuation. In this work, we have prepared a glass-forming polydomain nematic network that combines reversible actuation associated with a polydomain−monodomain transition with lower temperature one-way shape memory centered at Tg. To test separability of these phenomena, distinct deformations were achieved and temporarily fixed by (1) co...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.