Abstract

Attention-Deficit Hyperactivity Disorder (ADHD) is one of the most common neurodevelopmental disorders and manifests inattention, hyperactivity, and impulsivity symptoms in childhood that can last throughout life. Genetic and environmental studies implicate the dopamine system in ADHD pathogenesis. Work from our group and that of others indicates that deltamethrin insecticide and stress exposure during neurodevelopment leads to alterations in dopamine function, and we hypothesized that exposure to both of these factors together would lead to synergistic effects on DNA methylation of key genes within the midbrain, a highly dopaminergic region, that could contribute to these findings. Through targeted next-generation sequencing of a panel of cortisol and dopamine pathway genes, we observed hypermethylation of the glucocorticoid receptor gene, Nr3c1, in the midbrain of C57/BL6N males in response to dual deltamethrin and corticosterone exposures during development. This is the first description of DNA methylation studies of Nr3c1 and key dopaminergic genes within the midbrain in response to a pyrethroid insecticide, corticosterone, and these two exposures together. Our results provide possible connections between environmental exposures that impact the dopamine system and the hypothalamic-pituitary-adrenal axis via changes in DNA methylation and provides new information about the presence of epigenetic effects in adulthood after exposure during neurodevelopment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.