Abstract

This study determines failure criterion for steel member cross-sections, subjected to combined bending moment M , shear force V , and axial force P (MVP). The principle of maximum plastic strain energy is employed to develop the strain–stress relationship for plastic flow, and the expression for the MVP yield surface of the cross-section. A linear distribution of shear strain over the cross-section is assumed. The influence of plastic deformation on bending moment, shear force and axial force, at full yield of the cross-section, is investigated. Results predicted by the derived MVP failure surface, are compared with those obtained by other studies in the literature. The derived MVP yield surface can serve as a basis to identify the failure of steel members, such as during seismic or progressive-failure analysis of building frameworks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.