Abstract

Local magnetic field inhomogeneity caused by susceptibility artifacts due to air in the endorectal coil substantially degrades the quality of 3D MR spectroscopic imaging (3D-MRSI). Perflubron (PFB) has magnetic susceptibility similar to that of human tissue. We prospectively assessed the effect of susceptibility matching using PFB on in vivo prostate (1)H-3D-MRSI. Ninety-one consecutive patients referred for 3D-MRSI were examined using air and PFB as the filling agent for endorectal coils at 1.5T with an identically placed PRESS box and sat bands. Solely auto-shim without additional manual shimming was used. The full width at half maximum (FWHM) of the water peak was statistically compared with a paired t-test. The spectral quality was visually evaluated for the definition of metabolite peaks and for the citrate peak split (duplet). The MR image quality was rated on a five-point scale. FWHM was significantly less (p < 0.001) using PFB (mean 9.0 +/- 3.3, range 3 - 20) than air (mean 14.9 +/- 4.2, range 6 - 26) in 85/91 patients (93%). The spectral quality markedly improved using PFB and frequently the duplet of the citrate peak was able to be identified. Image quality ratings were similar (mean rating PFB 4.2, air 4.3 points). Omitting manual shimming led to a time savings of 4 min. per study. 3D-MRSI using PFB for susceptibility matching benefits from significantly better local field homogeneity, thus providing improved spectra quality. Combined with a substantial time savings in data acquisition, this may increase the clinical utilization of 3D-MRSI in patients with prostate cancer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.