Abstract

Experiments were conducted to delineate the applicability and limitations of biologically active Fe(0) barriers to remove nitrate under various geochemical and hydraulic conditions. Microcosm studies showed that, while no Fe(0) treatment was needed to remove nitrate from a high-carbon soil, adding Fe(0) to a low-carbon soil supplemented the electron donor pool and enhanced nitrate removal. Montmorillonite, an acidic aluminosilicate mineral, enhanced Fe(0) corrosion and nitrate removal (from about 1 to 3 mg/L NO3-N per day), and reduced the transient accumulation of nitrite. Combining autotrophic denitrifiers (e.g., Paracoccus denitrificans) with Fe(0) significantly reduced the amount of nitrite eluted from aquifer columns, from up to 7 to less than 1 mg/L NO2∼-N. Bacteria were observed to preferentially colonize the Fe(0) surface, which produces cathodic H2 when corroded by water. The preferential colonization of Fe(0) suggests that hydrogenotrophic consortia are likely to develop around Fe(0) walls to exploit cathodic depolarization as a metabolic niche.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.