Abstract

Surface electroenterogram (EEnG) recording is a novel technique for monitoring intestinal motility non-invasively. However, surface EEnG recordings are contaminated by cardiac activity, the respiratory artefact, movement artefacts and other types of interference. The goal of this work is to remove electrocardiogram (ECG) interference and movement artefacts from surface EEnG by means of a combined method of empirical mode decomposition and independent component analysis. For this purpose, 11 recording sessions were conducted on animal models. In order to quantify the effectiveness of the proposed method, several parameters were calculated from each session: signal-to-ECG interference ratio (S/I), energy over 2 Hz (EF2) which quantifies the intestinal motility index of external EEnG recording and the variation of EF2. The proposed method removes both ECG interference and movement artefacts from surface EEnG, obtaining a significantly higher S/I ratio and considerably reducing the non-physiological variation of EF2. Furthermore, after applying the combined method, the correlation coefficient between internal recording EF2 and surface recording EF2 rises significantly. The proposed method could therefore be a useful tool to reduce high frequency interference in EEnG recording and to provide more robust non-invasive intestinal motility indexes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call