Abstract
Methionine (Met) deprivation stress (MDS) is proposed in association with chemotherapy in the treatment of some cancers. A synergistic effect of this combination is generally acknowledged. However, little is known on the mechanism of the response to this therapeutic strategy. A model of B16 melanoma tumor in vivo was treated by MDS alone and in combination with chloroethylnitrosourea (CENU). It was applied recent developments in proton-NMR spectroscopy-based metabolomics for providing information on the metabolic response of tumors to MDS and combination with chemotherapy. MDS inhibited tumor growth during the deprivation period and growth resumption thereafter. The combination of MDS with CENU induced an effective time-dependent synergy on growth inhibition. Metabolite profiling during MDS showed a decreased Met content (P < 0.01) despite the preservation of the protein content, disorders in sulfur-containing amino acids, glutamine/proline, and phospholipid metabolism [increase of glycerophosphorylcholine (P < 0.01), decrease in phosphocholine (P < 0.05)]. The metabolic profile of MDS combined with CENU and ANOVA analysis revealed the implication of Met and phospholipid metabolism in the observed synergy, which may be interpreted as a Met–sparing metabolic reprogramming of tumors. It follows that combination therapy of MDS with CENU seems to intensify adaptive processes, which may set limitations to this therapeutic strategy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.