Abstract

Hemicelluloses with high molecular mass are needed for the manufacture of value added products such as food packaging barrier films. In this work such molecules were recovered from chemithermomechanical pulp (CTMP) process water using an innovative three-stage process comprising membrane separation and enzymatic treatment with laccase. Microfiltration followed by ultrafiltration was found to be a suitable combination in the first stage, providing a concentrated and purified hemicellulose fraction suitable for enzymatic treatment. In both membrane processes a high average flux (260 and 115l/m2h) and a low fouling tendency were observed. A marked increase in the average molecular mass of hemicelluloses with bound lignin moieties was achieved by laccase treatment in the second stage. The enzymatically crosslinked hemicelluloses were finally recovered in the third stage using ultrafiltration. In the final high molecular mass solution the hemicellulose concentration was 54g/l, the contribution of hemicelluloses to the total solids content 43%, and the viscosity of the solution 27mPas. The results demonstrate that a hemicellulose fraction of high quality can be produced from CTMP process water, and that this could constitute a suitable feedstock for the production of, for example, barrier films for renewable packaging.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.