Abstract

Among malignant mesotheliomas (MM), the sarcomatoid subtype is associated with higher chemoresistance and worst survival. Due to its low incidence, there has been little progress in the knowledge of the molecular mechanisms associated with sarcomatoid MM, which might help to define novel therapeutic targets. In this work, we show that loss of PTEN expression is frequent in human sarcomatoid MM and PTEN expression levels are lower in sarcomatoid MM than in the biphasic and epithelioid subtypes. Combined Pten and Trp53 deletion in mouse mesothelium led to nonepithelioid MM development. In Pten;Trp53-null mice developing MM, the Gαi2-coupled receptor subunit activated MEK/ERK and PI3K, resulting in aggressive, immune-suppressed tumors. Combined inhibition of MEK and p110β/PI3K reduced mouse tumor cell growth in vitro. Therapeutic inhibition of MEK and p110β/PI3K using selumetinib (AZD6244, ARRY-142886) and AZD8186, two drugs that are currently in clinical trials, increased the survival of Pten;Trp53-null mice without major toxicity. This drug combination effectively reduced the proliferation of primary cultures of human pleural (Pl) MM, implicating nonepithelioid histology and high vimentin, AKT1/2, and Gαi2 expression levels as predictive markers of response to combined MEK and p110β/PI3K inhibition. Our findings provide a rationale for the use of selumetinib and AZD8186 in patients with MM with sarcomatoid features. This constitutes a novel targeted therapy for a poor prognosis and frequently chemoresistant group of patients with MM, for whom therapeutic options are currently lacking. SIGNIFICANCE: Mesothelioma is highly aggressive; its sarcomatoid variants have worse prognosis. Building on a genetic mouse model, a novel combination therapy is uncovered that is relevant to human tumors.

Highlights

  • Malignant Mesothelioma (MM) arises mainly from the pleural and peritoneal mesothelium and less frequently from other sites and it is strongly associated with asbestos exposure

  • We show that loss of PTEN expression is frequent in human sarcomatoid MM and PTEN expression levels are lower in sarcomatoid MM than in the biphasic and epithelioid subtypes

  • Sarcomatoid MM cases are underrepresented in all reported cohorts, constituting 3-9% of all specimens, hampering their molecular characterization and the identification of genetic alterations contributing to their poor prognosis and chemoresistance

Read more

Summary

Introduction

Malignant Mesothelioma (MM) arises mainly from the pleural (pl) and peritoneal (pe) mesothelium and less frequently from other sites and it is strongly associated with asbestos exposure. There is currently no standard second-line treatment for MM and Bevacizumab is the only approved targeted therapy, in combination with cisplatin and pemetrexed [2]. This is due, in part, to the limited understanding of the molecular pathogenesis of MM. The PI3K/AKT/mTOR pathway promotes cell proliferation and survival and is activated in most MM [9,10,11]. Genetic MM mouse models, sometimes combined with asbestos exposure, have confirmed the key role of PI3K/mTOR activation and Trp inactivation in MM initiation and progression [17,18,19]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call