Abstract
The molecular structure of 1-methylaminophosphinic acid (AMPA) was investigated with the matrix isolation IR spectroscopy and ab initio calculations performed with RHF, MP2, MP3, MP4(DQ), MP4(SDQ) and MP4(SDTQ) methods. Three pseudopotential basis sets designed as CEP-31G were used in the calculations: Basis Set I-CEP-31G with the d-functions on phosphorus; Basis Set II-CEP-31G with the d-functions on all heavy atoms; Basis Set III-CEP-31G with the d-functions on all heavy atoms and p-functions on hydrogens. Four stable molecular and four stable zwitterion conformers of aminophosphinic acid were found via ab initio calculations. According to the calculations, molecular conformers are always more stable than the zwitterion conformers, irrespective of the basis set size and level of theory. This result is in good agreement with matrix IR spectrum of the AMPA. The presence of the bands of OH stretching and NH2 bending vibrations and the absence of the bands of POO− and NH3+ vibrations are the evidence of molecular structure of AMPA in the isolated state. An increased number of vibrational bands is found in the IR spectrum. It is explained by the high conformation lability of AMPA molecules which is related to very low barrier of rotation about C–P bond. The IR spectrum is actually determined by multiple sites of AMPA molecule packed in the Ar crystal, which considerably increases the number of bands in the IR spectrum.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.