Abstract

A numerical model for predictive simulations of radiofrequency current drive in magnetically confined plasmas is developed. It includes the minimum requirements for a self-consistent description of such regimes, i.e., a three-dimensional kinetic equation for the electron distribution function, one-dimensional heat and current transport equations, and resonant coupling between velocity space and configuration space dynamics, through suitable wave propagation equations. The model finds its full application in predictive studies of complex current profile control scenarios in tokamaks, aiming at the establishment of internal transport barriers by the simultaneous use of various radiofrequency current drive methods. The basic properties of this nonlinear numerical system are investigated and illustrated by simulations applied to reversed magnetic shear regimes obtained by Lower Hybrid and Electron Cyclotron current drive for parameters typical of the Tore Supra tokamak [Equipe Tore Supra, in Proceedings of the 12th International Conference on Plasma Physics and Controlled Nuclear Fusion Research, Nice, France, 1988 (International Atomic Energy Agency, Vienna, 1989), Vol. 1, p. 9].

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.