Abstract

BackgroundOur goal was to test whether short-term intermittent hypobaric hypoxia (IHH) at a level well tolerated by healthy humans could, in combination with muscle electro-stimulation (ME), mobilize circulating progenitor cells (CPC) and increase their concentration in peripheral circulation.MethodsNine healthy male subjects were subjected, as the active group (HME), to a protocol involving IHH plus ME. IHH exposure consisted of four, three-hour sessions at a barometric pressure of 540 hPa (equivalent to an altitude of 5000 m). These sessions took place on four consecutive days. ME was applied in two separate 20-minute periods during each IHH session. Blood samples were obtained from an antecubital vein on three consecutive days immediately before the experiment, and then 24 h, 48 h, 4 days, 7 days and 14 days after the last day of hypoxic exposure. Four months later a control study was carried out involving seven of the original subjects (CG), who underwent the same protocol of blood samples but without receiving any special stimulus.ResultsIn comparison with the CG the HME group showed only a non-significant increase in the number of CPC CD34+ cells on the fourth day after the combined IHH and ME treatment.ConclusionCPC levels oscillated across the study period and provide no firm evidence to support an increased CPC count after IHH plus ME, although it is not possible to know if this slight increase observed is physiologically relevant. Further studies are required to understand CPC dynamics and the physiology and physiopathology of the hypoxic stimulus.

Highlights

  • Our goal was to test whether short-term intermittent hypobaric hypoxia (IHH) at a level well tolerated by healthy humans could, in combination with muscle electro-stimulation (ME), mobilize circulating progenitor cells (CPC) and increase their concentration in peripheral circulation

  • Human circulating progenitor cells (CPC) have generally been defined as circulating cells that express a variety of cell surface markers similar to those expressed by vascular endothelial cells, that adhere to endothelium at sites of hypoxia/ischemia, and which participate in new vessel formation, contributing to the maintenance of endothelial function and organ perfusion through mechanisms that range from endothelial repair to neovasculogenesis [1,2,3]

  • This study found no a significant increase in the number of CPC after IHH plus ME, as compared with a control group

Read more

Summary

Introduction

Our goal was to test whether short-term intermittent hypobaric hypoxia (IHH) at a level well tolerated by healthy humans could, in combination with muscle electro-stimulation (ME), mobilize circulating progenitor cells (CPC) and increase their concentration in peripheral circulation. Human circulating progenitor cells (CPC) have generally been defined as circulating cells that express a variety of cell surface markers similar to those expressed by vascular endothelial cells, that adhere to endothelium at sites of hypoxia/ischemia, and which participate in new vessel formation, contributing to the maintenance of endothelial function and organ perfusion through mechanisms that range from endothelial repair to neovasculogenesis [1,2,3]. When producing intermittent hypobaric hypoxia (IHH) in a hypobaric chamber it is possible to control the temporal parameters equivalent to ascent time, altitude time and descent time, thereby greatly reducing the risk of complications by limiting and tailoring the exposure time to each target and each patient’s tolerance

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call