Abstract

A new combined interferometric-mask method is suggested and realized for creation of 3-dimensional (3D) holographic periodic and quasi-periodic structures in photorefractive materials. The method is based on the preparation of 2- dimensional (2D) micrometric scale masks with different symmetries and illumination of the photorefractive material through the mask by Gaussian beam in combination with back reflecting mirror. The counter-propagating beam geometry builds up Gaussian standing wave, which determines the third half-wave period of the grating in the axial direction. Thus, the created 3D intensity pattern can be represented as numerous mask-generated 2D quasi-periodic structures located in each anti-node of the standing wave. The formed intensity pattern can be imparted into the photorefractive medium via electro-optic effect, thus creating micro- and sub-micro scale 3D refractive index volume gratings with new symmetries and properties. The gratings were recorded by 532 nm cw laser beams in Fe-doped lithium niobate crystals taking into account their high photorefractive properties and possibility of creating the persistent gratings. The gratings formed have ~ 10 μm period in radial and azimuthal directions and ~266 nm in axial direction. The gratings were interrogated by diffraction of low intensity Gaussian probe beams from the recorded structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call