Abstract

This paper is perpetrated to inspect the MHD flow and heat transfer of two distinct non-Newtonian fluids across a stretching sheet with the new heat flux theory namely Cattaneo-Christov. Using this model, one can discern the impact of thermal relaxation time. Casson and viscoelastic fluids are supposed for the present perusal. The impacts of frictional heat and irregular heat are accounted. According to the heat variations in the nature or in any other system, the radiation effect on the flows may be linear or nonlinear. So the current investigation is aimed at nonlinear radiation. The flow governing equations have been altered as ODE via appropriate transmutations and then resolved by adopting R-K and Newton calculations. Graphs are displayed to discern the influence of physical parameters entered into the problem. The shear stress and heat transfer coefficients are also tabulated. It is inferred that Casson fluid obtains better velocity compared with viscoelastic fluid. Also, it is essential to disclose that thermal relaxation time exhibits dual behaviour on Casson fluid temperature. Also there is intensification in thermal boundary layer thickness with the enlargement of temperature ratio or frictional heat.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.