Abstract

Functional inactivation of the Retinoblastoma (pRB) pathway is an early and obligatory event in tumorigenesis. The importance of pRB is usually explained by its ability to promote cell cycle exit. Here, we demonstrate that, independently of cell cycle exit control, in cooperation with the Hippo tumor suppressor pathway, pRB functions to maintain the terminally differentiated state. We show that mutations in the Hippo signaling pathway, wts or hpo, trigger widespread dedifferentiation of rbf mutant cells in the Drosophila eye. Initially, rbf wts or rbf hpo double mutant cells are morphologically indistinguishable from their wild-type counterparts as they properly differentiate into photoreceptors, form axonal projections, and express late neuronal markers. However, the double mutant cells cannot maintain their neuronal identity, dedifferentiate, and thus become uncommitted eye specific cells. Surprisingly, this dedifferentiation is fully independent of cell cycle exit defects and occurs even when inappropriate proliferation is fully blocked by a de2f1 mutation. Thus, our results reveal the novel involvement of the pRB pathway during the maintenance of a differentiated state and suggest that terminally differentiated Rb mutant cells are intrinsically prone to dedifferentiation, can be converted to progenitor cells, and thus contribute to cancer advancement.

Highlights

  • Almost all growth inhibitory signals act through the Retinoblastoma tumor suppressor protein family [1]

  • The inability to respond to growth inhibitory cues is one acquired trait of a cancer cell

  • Almost all such signals are eventually routed through the Retinoblastoma tumor suppressor pathway

Read more

Summary

Introduction

Almost all growth inhibitory signals act through the Retinoblastoma tumor suppressor protein (pRB) family [1]. In its active, hypophosphorylated form, pRB blocks cell proliferation by limiting the activity of the family of E2F transcription factors that control the expression of a large cohort of genes, including those that are essential for the G1 to S transition [2]. Inactivation of pRB relieves the critical constraint from E2F, rendering cells insensitive to antiproliferative signals, one of the acquired traits of a cancer cell. The functional inactivation of the pRB pathway is believed to be an obligatory early step in the majority of human cancers [7]. The current paradigm posits that the tumor suppressive function of pRB is defined by its ability to promote cell cycle exit

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.