Abstract
Main features inherent in simplified approach to residual stresses determination in cylindrical shells and tubes, external diameter of which is not less than 60 mm, by combing the hole-drilling method and reflection hologram interferometry are discussed in detail. Initial experimental information in a form of hole diameter increments in principal stress directions is derived from high-quality reflection holograms recorded near cylindrical objects of intermediate curvature value. Converting measured parameters into required stress values is based on the transition model that corresponds to plane stress conditions of pure membrane type. The technique developed is capable of determining residual stress component values within 5% accuracy in an absence of stress gradients over the probe hole diameter when a type of residual stress field corresponds to the transition model adopted. The accuracy analysis involved is based on matrix formulation of conventionally direct problem and an assumption on a pure membrane character of residual stress field under study for thin-walled shell. Required error estimations in a case of inspecting thick-walled cylindrical tube are obtained by combining the above-mentioned approach and an analogy of reconstructed fringe patterns with actual and artificial interferograms, which follow from drilling blind hole of the same geometrical parameters in thick-walled plates. Experimental verification of the developed approach is founded upon a determination of actual stresses in thin-walled cylindrical shell and obtaining residual stress distributions at the proximity of welded joint in thick-walled cylindrical tube.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.