Abstract
The quantity of spring snowmelt infiltration and runoff, which affects the hydrology of the freeze zone, depends on the antecedent soil water content (SWC) conditions at the time of the soil's freezing. An understanding of the characteristics of frozen soil is essential for spring sowing in the agricultural freeze zones. The main goal of this study was to evaluate the differences in the freeze–thaw process and the freeze–thaw-induced water redistribution between the paddy and dry lands in a freeze zone. For this purpose, a field study was conducted in the winter of 2011–2012 for two types of farmlands in Northeast China. To illustrate the soil's frost dynamics over time, the measured SWCs at different depths (15, 30, 60, and 90cm) were transformed into different expressions including the SWC dynamic, the frozen soil's profile, and the freezing and thawing front trace. The freezing characteristics in the paddy land, in contrast to that in the dry land, had a higher freezing point temperature, a larger amount of water movement to the upper layer, and a 2.76mm larger accumulation of water in the upper layer. However, the increase of SWC (which is equivalent to thawing) was evidently faster than the decrease of SWC (which is equivalent to freezing). The water in the frozen soil's profile was most likely redistributed towards the freezing front before soil temperature (ST) falls below the freezing point. The findings may partially explain the soil's freeze–thaw characteristics for the different stages as well as the combined impact of these characteristics with farmland use types on soil hydrology; the findings may also provide a foundation for forecasting the hydrologic response of the freeze–thaw process and provide guidance for management strategies dealing with seasonally frozen agricultural soils.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.