Abstract
The extraction of concentrated volatile oils from various plant species is generally carried out by hydrodistillation technique. However, this hydrodistillation technique is expensive owing to more solvent and energy consumption. In this study, effect of ultrasonic pre-treatment prior to hydrodistillation on extraction of Cinnamomum cassia bark oil was evaluated. Process variables for extraction were optimized by Taguchi method. Results revealed that ultrasound pre-treatment hydrodistillation (UAHD) can enhance the yield of the extracted oil when compared with conventional hydrodistillation (HD) technique. To predict the yield of the extracted essential oil significant mathematical model was developed. Optimum parameters were determined according to the mathematical model they were: solid loading 25 g, ultrasound power 600 W, extraction time 35 min, and solvent quantity 100 ml. Further, gas chromatography–mass spectrometry (GC–MS) results of C. cassia bark oil revealed that UAHD produced more oxygenated compounds than HD extraction method. In addition, UAHD was found to be less energy consuming and environmentally safer than HD extraction method. Moreover, FT-IR spectra indicate that the effect of UAHD extraction method released all the volatile compounds from treated C. cassia bark powder. Finally, the optimum parameters were confirmed by the experiments performed, in which the yield of the oil of 3.17% was obtained. This study demonstrated that ultrasound pre-treatment prior to hydrodistillation could be useful to extract bioactive compounds with reduction in extraction time for extraction of C. cassia bark oil.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.