Abstract

BGaAs/GaAs epilayers and BInGaAs/GaAs quantum well (QW) have been prepared using metal–organic chemical vapor deposition under different growth conditions, and their physical and structural properties have been examined. SEM-EDS investigation showed a dependence of surface properties of the ternary compound on the growth conditions. High-resolution X-ray diffraction evidenced a tensile strain for the ternary alloys whatever the growth condition, while the quaternary QW always shows a compressive strain state. Room temperature optical absorption allowed to follow the variation of the bandgap with boron incorporation. Photoluminescence measurements confirmed the carrier-localization phenomenon and its dependence with the growth conditions. Deposition temperature and diborane (B2H6) flow rate are with particularly significant effects on the optical properties: lower diborane flow rate and high growth temperature enhance the radiative emission. Computer simulation using localized state ensemble model quantitatively relates the lattice inhomogeneity to the optical properties and suggests a way to engineer the localization phenomenon and avoid clustering effects. Electrical investigations by current–voltage, capacitance and conductance methods have been performed for the first time on selected BGaAs samples. The ideality factor of Schottky barriers has been determined, while their height and film doping level could only be approximately estimated. Such physical properties make boron-based alloys very promising for applications in multijunction solar cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.