Abstract

Cavernous nerves course along the surface of the prostate gland and are responsible for erectile function. These nerves are at risk of injury during surgical removal of a cancerous prostate gland. In this work, a combination of segmentation, denoising, and edge detection algorithms are applied to time-domain optical coherence tomography (OCT) images of rat prostate to improve identification of cavernous nerves. First, OCT images of the prostate are segmented to differentiate the cavernous nerves from the prostate gland. Then, a locally adaptive denoising algorithm using a dual-tree complex wavelet transform is applied to reduce speckle noise. Finally, edge detection is used to provide deeper imaging of the prostate gland. Combined application of these three algorithms results in improved signal-to-noise ratio, imaging depth, and automatic identification of the cavernous nerves, which may be of direct benefit for use in laparoscopic and robotic nerve-sparing prostate cancer surgery.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call