Abstract

In this study, a spray-drying approach is presented to develop (1) Cu-based metal–organic framework (Cu-MOF) supported on aluminum oxide nanoparticle cluster and (2) its derivedCu-ZnO/Al2O3 hybrid catalyst for combined (CO + CO2) hydrogenation to methanol. The results show superior high space time yield, 23.14 mmol gcat-1h−1, and selectivity to methanol (85%) were achievable under a moderate-pressure (30 bar) and relatively low-temperature (220 °C) operation. Incorporation of ZnO and Al2O3 (i.e., in the form of nanoparticle cluster) enhanced the dispersion and the redox ability of Cu in the MOF-derived catalyst, both of which were critical factors to the catalytic activity toward the combined hydrogenation of CO2 and CO to methanol. An optimal performance, in terms of the methanol yield, was achieved by using the catalyst with a Cu/Zn molar ratio of 2 and partially reduction by H2 at a relatively lower temperature (300 °C). The work demonstrates a new route for the design of MOF-derived catalyst by using an aerosol-assisted synthesis approach, showing promise for the catalysis of a variety of chemical reactions in the field of CO2 capture and utilization.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call