Abstract

Hot extrusion is a promising method for producing high-performance thermoelectric bismuth telluride alloys because of its ability to create textured microstructures. However, hot extrusion is less favourable for scaling-up because of temperature and strain gradients along the radial direction, and only <110> -textured thermoelectric legs can be obtained because of the fibre-like texture. We suggest a way to overcome these disadvantages by implementing an additional spark plasma sintering process on a stack of extrudates. Using this combined process, we demonstrate the fabrication of 12 × 15 × 13 mm3 p-type (Bi0.2Sb0.8)2Te3 samples from extrudates that had originally been 3 mm in diameter. The evolution of sheet-like texture revealed by SEM, XRD, and EBSD allows us to obtain both <110> - and <001> -textured thermoelectric legs from a single specimen that are desirable for low- and high-temperature applications, respectively. Our results demonstrate the combined method as an industry-friendly process for fabricating high-performance thermoelectric materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call