Abstract

Purpose – The combined heat and power dispatch (CHPD) aims to optimize the outputs of online units in a power plant consisting thermal generators, co-generators and heat-only units. Identifying the operating point of a co-generator within its feasible operating region (FOR) is difficult. This paper aims to solve the CHPD problem in static and dynamic environments. Design/methodology/approach – The CHPD plant operation is formulated as an optimization problem under static and dynamic load conditions with the objectives of minimizations of cost and emissions subject to various system and operational constraints. A novel bio-inspired search technique, grey wolf optimization (GWO) algorithm is used as an optimization tool. Findings – The GWO-based algorithm has been developed to determine the preeminent power and heat dispatch of operating units within the FOR region. The proposed methodology provides fuel cost savings and lesser pollutant emissions than those in earlier reports. Particularly, the GWO always keeps the co-generator’s operating point within the FOR, whereas most of the existing methods fail. Originality/value – The GWO is applied for the first time to solve the CHPD problems. New dispatch schedules are reported for 7-unit system with the objectives of total fuel cost and emission minimizations, 24-unit system for economic operation and 11-unit system in dynamic environment. The simulation experiments reveal that GWO converges quickly, consistent and the statistical performance clears its applicability to CHPD problems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call