Abstract

An exact and a numerical solutions to the problem of a steady mixed convective MHD flow of an incompressible viscous electrically conducting fluid past an infinite vertical porous plate with combined heat and mass transfer are presented. A uniform magnetic field is assumed to be applied transversely to the direction of the flow with the consideration of the induced magnetic field with viscous and magnetic dissipations of energy. The porous plate is subjected to a constant suction velocity as well as a uniform mixed stream velocity. The governing equations are solved by the perturbation technique and a numerical method. The analytical expressions for the velocity field, the temperature field, the induced magnetic field, the skin-friction, and the rate of heat transfer at the plate are obtained. The numerical results are demonstrated graphically for various values of the parameters involved in the problem. The effects of the Hartmann number, the chemical reaction parameter, the magnetic Prandtl number, and the other parameters involved in the velocity field, the temperature field, the concentration field, and the induced magnetic field from the plate to the fluid are discussed. An increase in the heat source/sink or the Eckert number is found to strongly enhance the fluid velocity values. The induced magnetic field along the x-direction increases with the increase in the Hartmann number, the magnetic Prandtl number, the heat source/sink, and the viscous dissipation. It is found that the flow velocity, the fluid temperature, and the induced magnetic field decrease with the increase in the destructive chemical reaction. Applications of the study arise in the thermal plasma reactor modelling, the electromagnetic induction, the magnetohydrodynamic transport phenomena in chromatographic systems, and the magnetic field control of materials processing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call